
2 Project Plan

2.1 TASK DECOMPOSITION

● Find/ write code that can collect the necessary data. This data includes but is not limited to
CPU L3 cache size. This information will be used to pinpoint the internet traffic.

● Gain access to our user space on the server. This user space will allow us to test things in a
closed environment.

● Start creating lambda functions locally on the server. These functions will used to gather
information.

● Test these lambda functions locally to ensure they are working properly. We will test locally
to insure that our functions are working properly.

● Gain access to our Firecracker environment. This will be a closed environment and will
provide us with more information about security flaws in serverless functions

● Start gathering data about which languages allow the most vulnerabilities to be exploited.
● Write a research paper that accurately describes our findings and can be easily understood

by anyone with a serverless background.

2.2 PROJECT MANAGEMENT/TRACKING PROCEDURES

For our project we will adopt a waterfall+agile management style. We will use the agile
management style to quickly complete any small steps that need to be completed before we can
complete larger parts of the project. We will use the waterfall approach to complete bigger parts of
the project and set goals and dates to have certain aspects of the project completed. For example we
will use the agile approach to complete steps like rewriting attack code and the waterfall approach
to complete bigger steps such as getting our server set up.

Our group will use Gitlab, Discord and Microsoft Teams to track progress throughout this semester
and next. We will be using the features available in Gitlab to place new and completed tasks as well
as assigning team members to tasks.

2.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

We will utilize the sprint system in agile to break out milestones down into two-week long goals.
Each sprint can be further broken down into easily-divisible parts or tasks that are simple to
understand, have as few dependencies as possible, and are simple to verify for correctness.
Milestones we are looking at include: Working server with all required access and technology set up
for development, All attack codes written and verified for testing, Attack codes run on server and
dataset created based off results, Machine learning model understands dataset and can make
conclusions on new datasets, and Our machine learning model recognises running functions based
on timing with a fifty percent accuracy.



2.4 PROJECT TIMELINE/SCHEDULE
Mi
d-
Oct
.

End
of
Oct.

Mid
-No
v.

End
of
Nov.

Mid
-De
c.

End
of
Dec.

Mid
-Ja
n.

End
of
Jan.

Mid
-Fe
b.

End
of
Feb.

Mid
-Ma
r.

End
of
Mar.

Mid
-Ap
r.

End
of
Apr.

Server fully set up

Attack codes
written and verified

Attack code
dataset created

Machine learning
model trained

Machine learning
model accuracy
raised

Subtasks by milestone:

● Server fully set up
○ Firecracker verified to be properly installed on server via serverless function test
○ Member permissions confirmed correct

● Attack codes written and verified
○ Attack codes in variety of languages: minimum one per team member from pool of

Node.js, Python, Java, Go, Ruby, .NET, others
○ Attack codes functional on our computers and on server
○ Data being collected in reasonable shared format

● Attack code dataset created
○ Functions chosen to run on Firecracker while attack codes are running
○ Determination of which attack codes are most accurate
○ Data collection automated

● Machine learning model trained
○ Type of model, parameters, and hyperparameters determined
○ Models tested on new data

● Machine learning model accuracy raised
○ Iterative process of improving model performance
○ Aiming for >50% chance of identifying function being run



2.5 RISKS AND RISK MANAGEMENT/MITIGATION

Working on a project that is doing a significant amount of research, means that our estimates for
the length of required times are just that estimates. As such, any of the items that we need to
accomplish for this project could have a requirement time that could dramatically underestimate
that actual required time, after moving from purely theoretical, to actual implementation. As this
risk is very likely, we have some pre-decided mitigating factors in place including have multiple
alternative paths for all possible deliverables. An example of this is each group member starting
with a different programming language supported by serverless functions to find the most useable
language. Alongside this, as we are using a sprint based planning strategy, so as inevitable issues
arise, we can budget extra time, by adding items to our backlog.

Alongside this, in the case our project produces findings that confirm serverless functions can leak
data, many steps need to be taken to avoid risk. This would mean we would need to deliver
server-providing companies such as AWS with relevant information and our findings. If we do not
collect data in a thorough way and if we do not record our process with proper due diligence, these
companies might not heed our advice. If we don’t record every step of the process, and companies
don’t take our findings seriously because of it, users will be at risk to the vulnerability.



2.6 PERSONNEL EFFORT REQUIREMENTS

For personal effort requirements, we expect each team member to put in good personal effort that
will get the needed work done. A good guideline for this would be using the Iowa State University
provided estimate of 10 hours outside of class per week, for a 3 credit course. Accounting for the 1.5
hours we spend each week meeting, that give each member an estimated time of 8.5 hours of
possible work per week. For our 5 team members, multiplied with the useable weeks each semester,
that gives us a maximum of 1100 total person hours. Accounting for general loss, as each member
being full time students, will be unable to maintain full momentum for all sprints, we can
reasonably budget 1000 total person hours for the whole project.

Weekly Time Budgeting Table

Items Needing Done Estimated Time Total Time for Item Combined Total Time

General Documentation 2 total hours/week every week 60 total hours 60 total hours

Learning basics of new programming
languages

5.5 hours/week per person for the 3 weeks 83 total hours 143 total hours

Design an implementation of attack
code in each language

6 hours/week per person for 2 weeks 60 total hours 203 total hours

Testing each set of attack codes 7 hours/week per person for 2 weeks 70 total hours 273 total hours

Using Attack Code to collect and
quantify dataset

7 hours/week for 5 weeks 175 total hours 448 total hours

Learning tools to build a machine
learning model on the dataset

5 hours/week for 2 weeks 50 total hours 498 total hours

Training the model on the collected
dataset

6 hours/week for 4 weeks 120 total hours 618 total hours

Verifying the model properly quantifies
new data

6 hours/week for 2 weeks 60 total hours 678 total hours

Refining the model for further accuracy 7 hours/week for 5 weeks 175 total hours 853 total hours

Compilation to prepare to for final
deliverables

7 hours/week per person for 2 weeks 70 total hours 923 total hours

General Overhead .5 hours/week per person every week 75 total hours 998 total hours

2.7 OTHER RESOURCE REQUIREMENTS

Some other resources that we need as a group to complete this project is support from Dr.
Gulmezoglu’s PhD student who is also working with serverless functions, and is helping maintain
the server that we will be using to conduct our testing.


